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Introduction

Homeobox (Hox) genes are a set of transcription factors has been 
studied extensively in diverse fields of molecular and evolutionary 
biology. This protein family plays a very vital role in anterior-posterior 
axis patterning of animal embryos and in the development of tetrapod 
limb [1- 2]. The common feature of Hox proteins is the presence of 60 
amino acids motif called homeodomain and Hox genes belong to the 
extensive superfamily of homeobox transcription factors [3].

The organisation of Hox genes within the genome in clusters is 
commonly found in several animals. A cluster of ancestral Hox gene, 
which is known to have originated from tandem duplications in early 
eukaryotic species, has been found in all bilaterian animals. Although 
Hox genes have diverged in various species but the homeodomain 
protein motif has remained highly conserved. Thus a given Hox gene 
can be easily assigned by means of homology to one of the genes along 
the cluster. Hox genes come under the category of one of the 14 known 
Paralogous Groups (PG). The duplication of ancestral cluster has been 
accomplished early in the vertebrate lineage [4-5]. In case of 
mammals, Hox genes are arranged in four clusters whereas teleost Hox 
genes are usually organised on 7 clusters, which resulted because of 
an additional duplication specific to teleost fishes [6-7]. The 
subsequent occurrence of lineage-specific gene has been affected, 
followed by diverse presence/absence combinations of Hox genes [8].

Hox genes encode a major group of evolutionarily conserved 
transcription factors controlling various functions such as axis 
specification and patterning of the central nervous system during 
embryonic development [9]. The Hox genes in vertebrates comprises 
of 13 paralog groups, expressed in the form of clusters on different 
chromosomes. In tetrapods, there are at least 39 genes are organized in 
4 clusters, HoxA, HoxB, HoxC, and HoxD, whereas in teleosts, 4 
clusters are found which resulted due to duplication of a whole genome 
early in their lineage [10-11].

The duplicated chromosomal regions are best exemplified by the 
occurrence of clusters of Hox genes [12-14]. Hox transcription factors 
are generally characterized by the presence of their DNA binding 
domain, the homeodomain. Hox genes were first discovered in the fruit 
fly Drosophila as the target gene for undergoing homeotic mutation, in 

which alteration in the segmental identity takes place, as in case of 
bithorax phenotype [15]. Hox genes are especially featured by their 
arrangement in the form of genomic clusters. A single cluster is found 
in all invertebrates that are either interrupted as in Drosophila species 
[16] or are found dispersed through the genome as in urochordates 
[17-18] and nematodes [19], whereas four clusters are a unique 
feature of  the tetrapods such as human or frogs [8, 20], as akin to 
cartilaginous fish [21]. The invertebrates which are in close relation to 
vertebrates, such as the cephalochordate Branchiostoma [13, 22] 
possess a single cluster, which is also rearranged in case of the sea 
urchin [23]. The genome duplication in fish-specific genome resulted 
in the occurrence of seven Hox clusters in extant fish, with alternate 
cluster loss in Ostariophysi (HoxDb in zebrafish) [6] and 
Acanthopterygii (HoxCb in pufferfish, medaka, cichlid) [11, 24-25]. 
The additional clusters are not exactly alike to the homologous genes 
of tetrapods, but they usually undergoes independent losses of genes 
[8], thereby rendering much more variations in the gene content in 
teleost clusters than those of tetrapods. All of the fish species 
investigated till date experiences differences in gene content among 
their Hox clusters [8, 26-27].

The morphological variation and functional innovation relies upon the 
duplication of genes and entire genomes [12, 28-29]. During the 
evolution of the vertebrates, the clusters of Hox genes have 
experienced several rounds of duplication. Two rounds of genome 
duplication took place in case of jawed vertebrates, resulting in the 
production of four canonical Hox clusters of most gnathostomes 
designated as ''HoxA'', ''HoxB'', ''HoxC'', and ''HoxD'' clusters. In the 
case of subset of ray-finned fishes, a third round of Hox cluster 
duplication have been affected [6, 30-31] and forms seven to eight 
clusters referred to as ''Aa,'' ''Ab,'' etc.

The objective of the present study is to evaluate the DNA binding 
domain of Homeobox protein Hox-B7a of Esox lucius (Northern pike) 
with reference to structure generation, validation of the generated 
models, distribution of secondary structural elements and positive 
charge distribution over the structure with the support of various 
bioinformatical algorithms.
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Materials and Methods

Amino acid sequence of DNA binding domain of Hox-B7a of Esox lucius 
(Northern pike) was obtained from National Centre for Biotechnology 
Information (http://ncbi.nlm.nih.gov) [32-33]. Comparative model of 
DNA binding domain of Hox-B7a of Esox lucius was generated by the 
comparative modeling tool Swiss-PDB Viewer [34]. After generation of 
molecular model of DNA binding domain of Hox-B7a of Esox lucius was 
subjected to further structural improvements by energy minimization 
step by Swiss-PDB Viewer [35]. The validation for three-dimensional 
structural model obtained by molecular modeling approach was 
assessed by PROCHECK algorithm and ProSA tool [36-37]. Distribution 
of secondary structural elements and positive charge distribution over 
the structure was performed with the assistance of UCSF Chimera 
package [38-40].

Results and Discussion 

Hox genes are important metazoan developmental genes they dictate 
the identity of embryonic regions along the anterio-posterior axis [41, 
25]. A homeobox DNA binding region exists in homeobox protein Hox-
B7a along the length of its sequence. The homeobox Hox gene encodes 
a characteristic homeodomain DNA binding protein fold that comprises 
of a 60-amino acid helix-turn-helix (HTH) structure where three alpha 
helices are joined together by short loop regions. The orientations of N-
terminal two helices are antiparallel while the longer C-terminal helix 
arranges itself almost perpendicular to the axes of the first two helices. 
The third C-terminal helix undergoes a number of hydrogen bonding and 
hydrophobic interactions with DNA, generally occurring between 
specific side chains and the exposed bases and thymine methyl groups 
residing in the major groove of the DNA [42, 8].

The 3D structure of proteins gives us a clear idea about the various 
interactions and stabilizations of proteins in their stable conformation. 
Structural genomics and proteomics involve a comparative molecular 
modeling approach, which is regarded as one of the most common 
methods for the prediction of the structures.

Ramachandran plot analysis using overall score of G-factor 
(PROCHECK analysis) is a good standard for validation purpose. 
Ramachandran plot for DNA binding domain of Hox-B7a of Esox lucius 
has been illustrated in Figure 1. Altogether 100% of the residues were 
detected in allowed and favored regions, which in turn validate the 
quality of generated protein structural model. The overall score of G-
factor for Hox-B7a of Esox lucius was -0.03 which was greater than the 
acceptable value of -0.50. PROCHECK algorithm also displayed 83.9% 
of residues in the most favored regions, with 16.1% residues in 
additionally allowed regions, respectively (Figure 1). This 
demonstrated that the backbone dihedral angles, phi and psi, in the 
DNA binding region of Hox-B7a 3D model, were reasonably accurate. 
This proposes that the modeled structure of Hox-B7a of Esox lucius is 
satisfactory and acceptable (Figure 2).  

ProSA tool was employed to investigate three-dimensional model of 
Hox-B7a protein for possible errors. As shown in Figure 3 the Z-score of 
CX1.BEC was - 3.33. The score was well inside the range of scores 
usually observed for proteins of matching size indicating highly reliable 
structures.

The manual inspection of Hox-B7a postulates that the total protein is 
composed by 215 number of amino acids. The DNA binding domain of 
Hox-B7a of Esox lucius is consist of 61 amino acids. Interestingly this 
region populated with positively charged amino acid. The presence of 
total number of positively charged amino acids is 18. In contrast to that 
the total number of negatively charged amino acids is only 7 (Figure 4). 
The presence of high number of positively charged amino acids in DNA 
binding region of Hox-B7a due to its direct attachment with negatively 
charged DNA molecule in the physiological milieu. For proper structural 
interaction this charge complementarity gives an added advantage to 
the DNA and Hox-B7a complex. The molecular model of DNA binding 
domain possesses helix-turn-helix (HTH) structure depicting three 

alpha helices that are joined via short loop regions (Figure 2).

Figure 1: Ramachandran plot of molecular model of DNA binding domain 
(Hox-B7a of Esox lucius)
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Figure 2: Three-dimensional modeled structure of DNA binding domain 
(Hox-B7a of Esox lucius).

Figure 3: Stereo-chemical validation of modeled structure of DNA binding 
domain (Hox-B7a of Esox lucius).
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Conclusion

In the present investigation, we have used comparative modeling 
approach to propose the first 3D structure of DNA binding region of 
Hox-B7a of Esox lucius. The current study focuses on the 
understanding of evolutionary structural enrichment strategy of DNA 
binding region of Hox-B7a. The appearance of different secondary 
structural element over structure provides for the molecule specific 
uniqueness of DNA binding region of Hox-B7a. This reason for this 
structural uniqueness relies on the system specific functional 
necessities which drive new inventions at the structural context. 
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Figure 4: Positive charge distribution over the modeled structure of DNA 
binding domain (Hox-B7a of Esox lucius).
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